Activity-Dependent Inhibitory Synaptogenesis in Cerebellar Cultures
نویسنده
چکیده
Inhibitory synapses on Purkinje cell somata in organotypic cerebellar cultures derived from newborn mice were increased after chronic exposure post explantation to agents that enhance neuronal activity. Inhibitory synaptogenesis was reduced in similar cultures after continuous blockade of spontaneous neuronal discharges. By contrast, excitatory synapses developed fully in the absence of neuronal activity. The reduction of inhibitory synaptogenesis was prevented by the simultaneous application of activity blocking agents and neurotrophins BDNF or NT-4, which are TrkB receptor ligands, but not with NT-3, a TrkC receptor ligand. The effect of endogenous neurotrophins was evaluated by continuously exposing cerebellar cultures to antibodies to BDNF and NT-4, which caused a significant reduction in the development of inhibitory Purkinje cell axosomatic synapses. These combined results indicated a role for TrkB receptors in activity-dependent inhibitory synaptogenesis. This concept was supported by the promotion of inhibitory synaptogenesis by specific antibody activation of TrkB
منابع مشابه
TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis.
Organotypic cerebellar cultures derived from newborn mice were simultaneously exposed to activity-blocking agents and neurotrophins for 2 weeks. Activity-blocked explants treated with the TrkB receptor ligands BDNF and neurotrophin-4 (NT-4) developed a full complement of Purkinje cell inhibitory axosomatic synapses, as defined ultrastructurally, and displayed control spontaneous cortical discha...
متن کاملIsolation and Culture of Post-Natal Mouse Cerebellar Granule Neuron Progenitor Cells and Neurons
The cerebellar cortex is a well described structure that provides unique opportunities for studying neuronal properties and development. Of the cerebellar neuronal types (granule cells, Purkinje cells and inhibitory interneurons), granule neurons are by far the most numerous and are the most abundant type of neurons in the mammalian brain. In rodents, cerebellar granule neurons are generated du...
متن کاملCerebellum and reelin under chronic treadmill exercise conditions in male rats
Reelin is an extracellular matrix neuroprotein which plays important roles during development and maturation of cerebellum. In the postnatal cerebellum, Reelin is synthesized by cerebellar granule cells and secreted to extracellular matrix. This secreted protein modulates adult synaptic function, neurotransmitter release and regulates plasticity. Exercise has beneficial effects on central nervo...
متن کاملTrans-Synaptic Interaction of GluRδ2 and Neurexin through Cbln1 Mediates Synapse Formation in the Cerebellum
Elucidation of molecular mechanisms that regulate synapse formation is required for the understanding of neural wiring, higher brain functions, and mental disorders. Despite the wealth of in vitro information, fundamental questions about how glutamatergic synapses are formed in the mammalian brain remain unanswered. Glutamate receptor (GluR) delta2 is essential for cerebellar synapse formation ...
متن کاملEffects of progesterone synthesized de novo in the developing Purkinje cell on its dendritic growth and synaptogenesis.
De novo steroidogenesis from cholesterol is a conserved property of vertebrate brains, and such steroids synthesized de novo in the brain are called neurosteroids. The identification of neurosteroidogenic cells is essential to the understanding of the physiological role of neurosteroids in the brain. We have demonstrated recently that neuronal neurosteroidogenesis occurs in the brain and indica...
متن کامل